Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 68, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216580

RESUMO

Plant macrofossils from packrat (Neotoma spp.) middens provide direct evidence of past vegetation changes in arid regions of North America. Here we describe the newest version (version 5.0) of the U.S. Geological Survey (USGS) North American Packrat Midden Database. The database contains published and contributed data from 3,331 midden samples collected in southwest Canada, the western United States, and northern Mexico, with samples ranging in age from 48 ka to the present. The database includes original midden-sample macrofossil counts and relative-abundance data along with a standardized relative-abundance scheme that makes it easier to compare macrofossil data across midden-sample sites. In addition to the midden-sample data, this version of the midden database includes calibrated radiocarbon (14C) ages for the midden samples and plant functional type (PFT) assignments for the midden taxa. We also provide World Wildlife Fund ecoregion assignments and climate and bioclimate data for each midden-sample site location. The data are provided in tabular (.xlsx), comma-separated values (.csv), and relational database (.mdb) files.


Assuntos
Clima , Fósseis , Plantas , México , América do Norte , Sigmodontinae
2.
PLoS One ; 10(10): e0138759, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26488750

RESUMO

Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0-58.0°N latitude by 136.6-103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070-2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.


Assuntos
Mudança Climática , Simulação por Computador , Ecossistema , Modelos Teóricos , Desenvolvimento Vegetal , Plantas , Canadá , Dióxido de Carbono/análise , Monitoramento Ambiental , Noroeste dos Estados Unidos , Dinâmica Populacional
3.
Environ Manage ; 34 Suppl 1: S125-48, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15883868

RESUMO

Ecoregion classification systems are increasingly used for policy and management decisions, particularly among conservation and natural resource managers. A number of ecoregion classification systems are currently available, with each system defining ecoregions using different classification methods and different types of data. As a result, each classification system describes a unique set of ecoregions. To help potential users choose the most appropriate ecoregion system for their particular application, we used three latitudinal transects across North America to compare the boundaries and environmental characteristics of three ecoregion classification systems [Küchler, World Wildlife Fund (WWF), and Bailey]. A variety of variables were used to evaluate the three systems, including woody plant species richness, normalized difference in vegetation index (NDVI), and bioclimatic variables (e.g., mean temperature of the coldest month) along each transect. Our results are dominated by geographic patterns in temperature, which are generally aligned north-south, and in moisture, which are generally aligned east-west. In the west, the dramatic changes in physiography, climate, and vegetation impose stronger controls on ecoregion boundaries than in the east. The Küchler system has the greatest number of ecoregions on all three transects, but does not necessarily have the highest degree of internal consistency within its ecoregions with regard to the bioclimatic and species richness data. In general, the WWF system appears to track climatic and floristic variables the best of the three systems, but not in all regions on all transects.


Assuntos
Classificação/métodos , Clima , Ecossistema , Geografia , Plantas , Ecologia , Sistemas de Informação Geográfica , América do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...